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ABSTRACT: Treatment of three representative S-substituted-u-cyanoacrylates (2) with 2-nitropro- 
pane and potassium carbonate in refluxing ethanol afforded stereoselectively cyclopropanoid 
precursors (4) to 3-substituted-2,2-dimethylcyclopropanecarboxylic acids (1). 

During the past decade a major research effort in agricultural chemistry culminated in the 

development of a new class of insecticides known as pyrethroids’, which are synthetic analogues 

of certain naturally occurring esters obtained from some chrysanthemum species (pyrethrum). 

Although the latter have been used as insecticides since the early nineteenth century, lack of 

stability to atmospheric influences precluded their use in agriculture. This limitation was 

removed with the discovery that certain ester derivatives of specific cyclopropanecarboxylic 

acids [e.g., permethrinic acid (2, R = CH=CC12)l were far superior in activity to the natural 

prototypes or the hitherto known insecticides of other structural types. Although the most 

important insecticidal pyrethroids are derived at present from permethrinic acid and 

chrysanthemic acid [z, R = CH=C(CH3)2], recent patent literature indicates insecticidal activity 

for specific ester derivatives of a variety of other cyclopropanecarboxylic acids, including ones 

lacking a vinyl substituent at C-3 L.g., 1, R = CH~CH(CH~),I.~ Also noteworthy is the potent 

acaricidal activity reported 3 
for derivatives of 3-aryl-2,2-dimethylcyclopropanecarboxylic acids 

(e.g., 2, R = C6H5). 

Although a host of methods have been developed4 for the synthesis of pyrethroid acids of 

general structure 1, many of these are limited to the preparation of a specific compound. A 

route (equation 1) developed by Krief and coworkers, 
5 

although quite useful for small-scale ’ 

synthesis of such compounds (11, suffers from the sensitivity of phosphoranes to air and traces 

of protic solvents. With this in mind, we decided to investigate a novel and more convenient 

route (equation 2) for synthesis of large quantities of a variety of pyrethroid acids of general 

structure 7. 

RR’C=CHC02CH3 + (CH3)2C=PPh3 __j (1) 
C02CH3 
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Due to its appreciable acidity and low cost, 2-nitropropane was selected as the reagent of 

choice for effecting the cyclopropanation reaction. Although this reagent has been used 

successfully by others 
6 

in Michael-type additions, to our knowledge no report of a subsequent 

displacement of the nitro group to afford a cyclopropanoid has been reported. 
7 

Indeed, in 

general, the aliphatic nitro group fails to serve as a leaving group in substitution and 

elimination reactions that proceed by an ionic process. 
8 

However, it is well known that 

B-elimination of nitrite takes place readily to afford olefins if an electron-withdrawing group 

exists at a position H to the nitro functionality. 

R’\ C=C/C02CH2CH3 

R’ ‘Y 

1, R’=Y=H; R=C6H5 

1. K2C03 
CH3 CH3 

CH30H, H20, A 

C02CH2CH3 2. LiCl, H 0 ‘H 
NaHC03, MS0 2D 

R 2 

2, R’=H; Y=CN i, Y=CN 5, Y=H; Z=CN 

3, R’=R= CH3; Y=CN 2, Y=CN; Z=H 

a, R= C6H5; a, R= CH2CH(CH3j2; 5, R= 3-pyridyl 
7, Y = C02H; Z = H 

Our initial efforts to obtain a cyclopropanoid using ethyl cinnamate (la) and 2-nitropropane - 

in the presence of one equivalent of base met with failure. To our amazement, however, treatment 

of the Knoevenagel adduct (2a)’ derived from benzaldehyde and ethyl cyanoacetate with equimolar - 

amounts of 2-nitropropane and anhydrous potassium carbonate in absolute ethanol (0.8 ml/mm01 of 

substrate, 4 hours at reflux) afforded cyclopropanoid 4a 
10 

as a single diastereomer 
11 

in 81% - 

yield after product isolation and subsequent distillation. 
12 

To verify that this methodology 

could be applied to the total synthesis of pyrethroid acids of general structure 1, the latter 

13 
product (4a) was saponified ; and the corresponding cyanoacid was subjected to decarboxylation 

14 
- 

[4 LiCl, 4 H20, 1.5 NaHC03, DMSO (2 mL/mmol of substrate), 165’~ (temperature of pre-heated oil 

bath), 4.5 hours] to afford cyclopropanoid nitriles 5a 
10 

and 6a 
10 

as a 55:45 mixture 
15 

- - 

respectively in > 60% yield (based on 4a). Subsequent saponification of this stereoisomeric - 

mixture of nitriles (5a and 6a) under conditions [3 equiv KOH, ethylene glycol (2 mL/mmol of - - 

substrate), 18 hours at reflux] known 
16 

to epimerize a related cis cyclopropanoid nitrile - 

afforded, in quantitative yield, trans-3-phenyl-2,2-dimethylcyclopropanecarboxylic acid (&). 
17 

To illustrate further the utility of this cyclization methodology, the Knoevenagel adduct 

(2b)” derived from isovaleraldehyde and ethyl cyanoacetate was treated with Z-nitropropane using - 

the conditions described above for a, affording cyclopropanoid cyanoester 4b 
10,19 . 

in 95% yield. - 

Although we have been unable to obtain any cyclization product from the S,g-disubstituted 

cyanoester 2, 2o presumably for steric reasons, this tandem Michael reaction-cycloalkylation 

methodology afforded the novel 
10 

cyclopropanoid 4c 
21 . 

in > 80% yield when applied to the - 

Knoevenagel adduct (2~)~~ derived from 3-pyridinecarboxaldehyde. - 
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In view of the facility with which the transformations reported in this communication can 

be effected, the methodology which we report offers great potential for the synthesis of both 

known and novel pyrethroid acids, 
23 

including the less accessible cis-stereoisomeric acids. A more 

detailed study of the tandem Michael reaction-cycloalkylation 
24 - 

step, as well as efforts to 

improve the stereospecificity of the decarbalkoxylation process (ff.+z), is presently being 

initiated and results will be reported in a future article. 
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15. This ratio was determined by 1 
H NMR analysis (cyclopropyl CH ‘s). 

.?. 
Both diastereomers were 
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(d, J = 9 Hz, lH), 1.67 (d, J = 9 Hz, lH), 1.36 (s, CH ), and 1.16 (6, CH ). Th,6 :orrespond- 
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